
AD-A240 543 ,ENTATION PAGE Mom7 V 1o
av rage 1 hour Per re so ne, cl udmg the tine for ro "vi es ruct on s searcd 0n exas ng d a bource 9her g a rd r n n g the da

'e rd* rg the burden estimate or any other aspect of th. colection of aromaioni. mcxkdrg suggeseton for todu thi burden, to washinoon
or, 1215 Jofferon ODava Hghway, Sudso 1204, A gon, VA 22202-4302, hid tothe CiSce of in namorruindo Regulal Affairs, Office of

1. AGENCY USE ONLY (Leave Blank) i 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I I Fijnal: 01 Aug 1991 to 01 Jun 1993

4 TITLE AND SUBTITLE 5 FUNDING NUMBERS

Verdix Corporation, VADS VAX/VMS=> Intel 386/WITEK 3167, VMS 5.2,
VAda-110-03315, Version 6.0, MicroVAX 3100 (Host) to iSBC 386/116 (using a
WEITEK 3167 fpu)(Target), 901129W1.11094

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7 PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-404-0891
Wright-Patterson AFB
Dayton, OH 45433
9 SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13 ABSTRACT (Maximum 200 words)

Verdix Corporation, VADS VAX/VMS=> Intel 386/WEITEK 3167, VMS 5.2, VAda-1 10-03315, Version 6.0,
Wright-Patterson AFB, MicroVAX 3100, VMS 5.2 (Host) to Intel iSBC 386/116 (using a WEITEK 3167 fpu), (bare
machine)(Target), ACVC 1.11.

DTIC
=' CTE p~' 91-11071
SEP 9 1991 lll///ll/Iil/!tl!tll

14 SUBJECT TERMS 15 NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16_PRICECODE

Capability, Val. Testing, Ada Val. Office,, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16 PRICE CODE

17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 -Standard Form 298, (Rev. 2-89)

9 1 9 19 023 Prescribed by ANSI Std 239-128

AVF Control Number:AVF-VSR-404-0891
1 August 1991
90-09-25-VRX

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 901129W1.11094
Verdix Corporation

VADS VAX/VMS => Intel 386/WEITEK 3167, VMS 5.2, VAda-11O-03315, Version 6.0
MicroVAX 3100 => iSBC 386/116 (using a WEITEK 3167 fpu)

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Acceso aForo

TIS \CRAM i~

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 29 November 1990.

Compiler Name and Version: VADS VAX/VMS => Intel 386/WEITEK 3167,
VMS 5.2, VAda-1lO-03315, Version 6.0

Host Computer System: MicroVAX 3100, VMS 5.2

Target Computer System: Intel iSBC 386/116 (using a WEITEK 3167 fpu),
(bare machine)

Customer Agreement Number: 90-09-25-VRX

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
901129W1.11094 is awarded to Verdix Corporation. This certificate expires
on 1 March 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
.ASD/SCEL
Wright-Patterson AFB OH 45433-6503

0 Ada Vjlrd p ranization

Direc or'o p ter & Software Engineering Division
Institute fo Defense Analyses
Alexandria VA 22311

4.Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Custromer~ Verdix Corporation

Ada Validation Facility: ASD/SCEL Wright Patterson AFB, OH 45433-6503

Ada Compiler Validation Capability (ACVC) Version: 1.11

Ada Implementation

Compiler Name: VADS VAX/VMS=>1nteJ 386, WEITEK 3167, VMIS 5.2, VAda-1l0-03315, Version:~ 6.0
Host Computer System: Micro VAX 31C0, VMS 5.2
Target Computer System: iSBC 386/116 (using a WETE 3167 fpu), (bare machine)

Declaration

1, the undersigned, representing Vardix Corporadu.4 declare thet Verdix Corporation has no knowledge of deliberate
dev iaxioas from the Ada LanguA,,e Standard AN$I/MMI-STD-1815A in the implementation listed. in this decisration.
I declare -hat .he Vc-dixc Corponu.t .;n is the owner of the above implementatica and the cerilicates shall be awarded in
the name of Verdix Corporation.

Date: 4 L
Suite 357
Becaverton Oregon -7OO6

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The -ollowing tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 12 October 1990.

E28005C B28006C C34006D B41308B C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
C74308A B83022B B83022H B83025B B83025D B83026B
B85001L C83026A C83041A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BDlB02B BDIB06A AD1B08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2Bi5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
BD8002A BD8004C CD9005A CD905B CDA2O1E CE21071
CE2117A CE2117B CE2119B CE2205B CE2405A CE3111C
CE3118A CE3411B CE3412B CE3607B CE3607C CE3607D
CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For thiz
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations requiring
more digits -than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

The following 21 tests check for the predefined type LONG INTEGER:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45612C C45613C C45614C C45631C C45632C
B52004D C55BO7A B55B09C B86001W C86006C
CD71O1F

C35702B, C35713C, B86001U, and C86006G check for the predefined type
LONG FLOAT.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONGFLOAT, or SHORT FLOAT.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this implementation
that range exceeds the safe numbers and must be rejected. (See section
2.3)

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAXMANTISSA of 47 or
greater.

C65624A..B (2 tests) check that the proper exception is raised if
MACHINE.OVERFLOWS is FALSE for floating point types; for this
implementation, MACHINE OVERFLOWS is TRUE.

C86001F recompiles package SYSTEM, making package TEXT 10, and hence
package REPORT, obsolete. For this implementation, the package TEXTI0
is dependent upon package SYSTEM.

B86001Y checks ioc a predefined fixed-point type other than DURATION.

C96005B check: for values of type DURATION'BASE that are outside the
range of DURATION. There are no such values for this imp2ementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type.

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types.

2-2

IMPLEMENTATION DEPENDENCIES

The teszs listed in the following table are not applicable because the
given file operations are not supported for the given combination of
mode and file access method:

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL I0
CE2102E CREATE OUT FILE SEQUENTIAL 10
CE2102F CREATE INOUT FILE DIRECT IO0-
CE2102F CREATE IN FILE DIRECT-IO
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUT FILE SEQUENTIALIO

CE2102Q RESET OUT-FILE SEQUENTIAL-IO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-I0
CE2102U RESET IN-FILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT FILE DIRECT 10
CE3102E CREATE IN FILE TEXT 10
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE TEXT-IO
CE31021 CREATE OUT FILE TEXT 10
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

CE2107A..E (5 tests), CE21O7L, CE211OB, and CE2111D attempt to associate
multiple internal files with the same external file for sequential
files. The proper exception is raised when multiple access is
attempted.

CE21O7F..H (3 tests), CE211OD, and CE2111H attempt tc associate multiple
internal files with the same external file for direct files. The proper
exception is raised when multiple access is attempted.

CE3111A..B (2 tests), CE3111D..E (2 tests), CE3114B, and CE3115A attempt
to associate multiple internal files with the same external file for
text files. The proper exception is raised when multiple access is
attempted.

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALI0. This implementation does
not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does not
restrict file capacity.

2-3

IMPLEMENTATION DEPENDENCIES

CE3304A checks that USE ERROR is raised if a call to SET LINE LENGTH or
SET PAGE LENGTH specifies a value that is inappropriate for the external
file. This implementation does not have inappropriate values for either
line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the page
number exceeds COUNT'LAST. For this implementation, the value of
COUNT'LAST is greater than 150000 making the checking of this objective
impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 22 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests:

B24009A B33301B B38003A B38003B B38009A
B38009B B85008G B85008H BC1303F BC3005B
BD2BO3A BD2DO3A BD4003A

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO; the compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST
as the range constraint of a floating-point type declaration because the
bounds lie outside of the range of safe numbers (cf. ARM 3.5.7(12)).

CD1009A, CD10091, CD1CO3A, CD2A22J, CD2A24A, and CD2A31A..C (3 tests) were
graded passed by Evaluation Modification as directed by the AVO. These
tests use instantiations of the support procedure LENGTH CHECK, which uses
Unchecked Conversion according to the interpretation given in AI-00590.
The AVO ruled that this interpretation is not binding under ACVC 1.11; the
tests are ruled to be passed if they produce Failed messages only from the
instances of LENGTHCHECK--i.e, the allowed Report.Failed messages have the
general form:

" * CHECK ON REPRESENTATION FOR <TYPEID> FAILED."

2-4

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies corr'.spond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
..........

type INTEGER is range -2147483648 .. 2147483647;

type SHORTINTEGER is range -32768 .. 32767;

type TINY INTEGER is range -128 .. 127;

type FLOAT is digits 15 range
-1.79769313486232E+308 .. +1.79769313486232E+308;

type SHORT FLOAT is digits 6 range
-3.40282E38.. +3.40282E38;

type DURATION is delta 0.001 range -2147483.648
2147483.647;

end STANDARD;

C-i

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The host and target computer systems for the Ada implementation were
connected by Ethernet. The rest of this Ada implementation tested in this
validation effort is described adequately by the information given in the
initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Steve Hodges
Verdix Corporation
14130-A Sully Field Circle
Chantilly VA 22021

For a point of contact for sales information about this Ada implementation
system, see:

Steve Hodges
Verdix Corporation
14130-A Sully Field Circle
Chantilly VA 22021

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro9O].

3-1

PROCESSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

a) Total Number of Applicable Tests 3797
b) Total Number of Withdrawn Tests 81
c) Processed Inapplicable Tests 91
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 292 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 292 tests were inapplicable to this
implementation. All inapplicable tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were not loaded directly onto the host computer. The tape
was loaded onto a Sun Workstation, and the tests were copied over Ethernet
to the host machine.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as
appropriate. The executable images were transferred to the target computer
system by the communications link described above, and run. The results
were captured on the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options.

3-2

PROCESSING INFORMATION

Test output, compiler and linker listings, and Job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
following macro parameters are defined in terms of the value V of
$MAX IN LEN which is the maximum input line length permitted for the tested
impliementation. For these parameters, Ada string expressions are given
rather than the macro values themselves.

Macro Parameter Macro Value

$BIGIDi (1..V-t -> 'A, V => '1')

$BIG-ID2 (l..V-1 => 'A' V => '2')

$BIG-ID3 (1. .V/2 => 'A) & '3' &

(1. .V-1-V/2 -> 'A')

$BIG-ID4 (1. .V/2 => WA) & '4' &
(1..V-1-V/2 -> 'A')

$BIGINTLIT (1..V-3 =>'0') & "298"1

$BIGREAL LIT (1.-V-5 =>'0') & "690.0"

$BIGSTRINGi " & (1..V/2 -> 'A) & '"'

$BIG-STRING2 ''& (1. .V-1-V/2 -> 'A) & '1' & "

$BLANKS (1. .V-20 =

$MAXLENINTBASEDLITERAL
"12:" & (1..V-5 => '0') & 1111:11

$MAX LEN REAL BASED_-LITERAL
"116:" & (1. .V-7 => '0') & "1F.E:"

$MAXSTRINGLITERAL ''& (1. .V-2 => 'A') &'"

A-1

MACRO PAR-'IMETERS

The following table lists all of the other macro parameters and their
respective values:

Macro Parameter Macro Value

$MAX-IN LEN 499

$ACC SIZE 32

$ALIGNMENT 4

$COUNT-LAST 2 147_483_647

$DEFAULT HEMSIZE 16 777_216

SDEFAULT STOR UNIT 8

$DEFAULT SYS NAME 1386

$DELTA-DOC 0. 0000000004656612873077392578125

SENTRY-ADDRESS SYSTEM."1+"(16#40#)

$ENTRY ADDRESS1 SYSTEM."*"(16#80#)

$ENTRY ADDRESS2 SYSTEM.%"+1(16#100#)

$FIELD-LAST 2_147_483_647

$FILE-TERMINATOR IJ

$FIXED-NAME NOSUCH TYPE

$FLOAT-NAME NOJSUCH TYPE

$FORMSTRING ll

$FORM STRING2 "CANNOTRESTRICT FILECAPACITY"

SGREATERTHAN DURATION 100.

$GREATER THANDURATION BASE LAST
1O0OO5000.0

$GREATER THAN FLOAT BASE LAST
-1.9E+308

$GREATERTHANFLOAT SAFE LARGE
_ - 5.OE+307

A- 2

MACRO PARAMETERS

$GETRTA-HR-LA SAFE LARGE
9.0E+37

$HIGH-PRIORITY 99

$ILLEGAL-EXTERNAL-FILE NAME1
Wl/illegal/file-name/2) 1Z21O2c.dat"

$ILGLETENLFL NAME2
iT/illegal/file name/CE21O2C* .DAT"I

$INAPPROPRIATE LINE LENGTH
-1

$IAPORAE-AELNT
-1

$INCLUDE PRAGMAl PRAGMA INCLUDE ("A28006D . TST")

$INCLUDE PRAGMA2 PRAGMA INCLUDE ("B28006Dl.TST")

$INTEGER-FIRST -2_147_483_648

$INTEGERLAST 2 147_483_647

$INTEGERLAST PLUS_1 2_147_483_648

$INTERFACE-LANGUAGE C

$LESSTHAN-DURATION -100_000.0

SLESSTHAN DURATI ON BASE FIRST
-0~000_000.0

$LINETERMINATOR ASCII.LF & ASCII.FF

SLOW-PRIORITY 0

$MACHINECODE STATEMENT
CODE O'(OP .> NOP);

$MACHINE CODE TYPE CODE_0

$MANTISSADOC 31

SMAXDIGITS 15

SMAXINT 2 147_483_647

$MAXINTPLUS 1 2 147_483_648

SMIN INT -2 147 483 648

A- 3

MACRO PARAMETERS

$NAME TINY-INTEGER

$NAHE-LIST 1386

SHAME SPECIFICATIONi VMS386$DKBO: [ACVC1.1l.C.E]X2120A.

SHAME SPECIFICATION2 VMS386$DKBO: [ACVC1.11.C.EJX212OB.

$NAMESPECIFICATION3 VMS386$DKBO: tACVC1.11.C.E]X3119A.

$NEGBASEDINT 16#FOOOOOOE#

$NEWHEMSIZE 16777 216

$NEV STOR UNIT 8

$NEIJSYSNAME 1386

$PAGE-TERMINATOR ASCII.FF

$RECORDDEFINITION RECORD SUBP: OPERAND; END RECORD;

$RECORDNAME CODE_0

$TASK--'ZE 32

$TASKSTORAGESIZE 1024

$TICK 0.01

$VARIABLE-ADDRESS VAR 31ADDRESS

$VARIABLE ADDRESS1 VAR 1'ADDRESS

$VARIABLEADDRESS2 VAR 21ADDRESS

$YOURPRAGHA PRAG14A PASSIVE

A-4

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-I

COMPILATION SYSTEM OPTIONS

VADS ADA - Ada compiler

Syntax

VADS ADA source file [, ...]

Qualifiers

/AFPEND Append all output to a log file.

/DEBUG
/DEBUG.G Write out the gnrx.lib file in ASCII.

/DEFINE
/DEFINE=(identifier:type-value", ...)
Define identifier of a specified type and value. See VADS ADA
PREPROCESSOR REFERENCE.

/DEPENDENCIES Analyze for dependencies only; no link will be performed
this option is given (/MAIN and /OUTPUT options must not be used with this
qualifier).

/ERRORS
/ERRORS[-(option [, ...])] Process compilation error messages using the ERR
tool and direct the output to SYS$OUTPUT; the parentheses can be omitted
if only one qualifier is given (by default, only lines containing
errors are listed).
Options:
LISTING List entire input file.

EDITOR[="editor"i
Insert error messages into the source file and call a text editor
(EDT by default). If a value is given as a quoted string,
that string is used to invoke the editor. This allows other editors
to be used instead of the default.

OUTPUT[-file name]
Direct error-processed output to the specified file name; if no file
name is given, the source file name is used with a file extension .ERR.

BRIEF List only the affected lines [default]

Only one of the BRIEF, LISTING, OUTPUT, or EDITOR options can be used in a
single command.

For more information about the /ERRORS option, see also COMPILING ADA
PROGRAMS, COMPILER ERROR MESSAGE PROCESSING.

/EXECUTABLE
/EXECUTABLE=file name
Provide an explicit name for the executable when used with the /MAIN qualif
the file-name value must be supplied (if the file type is omitted,

B-2

COMPILATION SYSISM OPTIONS

.EXE is assumed).

/1EEP I. Keep the intermediate language (IL) file produced
by the compiler front end. The IL file will be placed in the OBJECTS
directory, with the name ADA SOURCE.I.

/LIBRARY
/LIBRARY-library name Operate in VADS
library libraryname (the current working directory is the default).

/LINK ARGUMENTS
/LINK-ARGUMENTS="'value"
Pass command qualifiers and parameters to the linker.

/MAIN
/MAIN[-unit name] Produce an executable program
using the named unit as the main program; if no value is given, the
name is derived from the first Ada file name parameter (the
.A suffix is removed); the executable file name is derived from
the main program name unless the /EXECUTABLE qualifier is used.

/NOOPTIMIZE Do not optimize.

/WARNINGS Print warning diagnostics.

/OPTIMIZE
/OPTIMIZE[=numberl Invoke the code optimizer (OPTIM3). An optional digit
provides the level of optimization. /OPTIMIZE-4 is the default.

/OPTIMIZE no digit, full optimization
/OPTIKIZE-O prevents optimization
/OPTIMIZE=1 no hoisting
/OPTIMIZE=2 no hoisting, but more passes
/OPTIMIZE=3 no hoisting, but even more passes
/OPTIMIZE=4 hoisting from loops
/OPTIMIZE=5 hoisting from loops, but more passes
/OPTIMIZE=6 hoisting from loops with maximum passes
/OPTIMIZE=7 hoisting from loops and branches
/OPTIMIZE=8 hoisting from loops and branches, more passes
/OPTIMIZE=9 hoisting from loops and branches, maximum passes

Hoisting from branches (and cases alternatives) can be slow and does
not always provide significant performance gains, so it can be suppressed.

For more information about optimization, see COMPILING ADA PROGRAMS,
Optimization. See also pragma OPTIMIZECODE(OFF).

/OUTPUT
/OUTPUT=file name Direct the output to file name
(the default is SYSSOUTPUT).

/PRE PROCESS Invoke the Ada Preprocessor. See VADS ADA PREPROCESSOR
REFERENCE.

B-3

COMPILATION SYSTEM OPTIONS

/RECOMPILE LIBRARY
/RECOMPILE-LIBRARY-VADS library
Force analysis of all generic instantiations causing reinstantiation
of any that are out of date.

/SHOW Show the name of the tool executable but do not execute it.

/SHOW ALL Print the name of the front end, code generator,
optimizer, and linker, and list the tools that will be invoked.

/SUPPRESS Apply pragma SUPPRESS for all checks
to the entire compilation. (See also pragma SUPPRESS(ALLCHECKS))

/TIMING Print timing information for the compilation.

/VERBOSE Print information for the compilation.

Description

The command VADS ADA executes the Ada compiler and compiles the named Ada source
file, ending with the .A suffix. The file must reside in a VADS library
directory. The ADA.LIB file in this directory is modified after each Ada unit
is compiled.

By default, VADS ADA produces only object and net files. If the /MAIN option is
used, the compiler automatically invokes VADS LD and builds a complete program
with the named library unit as the main program.

Non-Ada object files may be given as arguments to VADS ADA.
These files will be passed on to the linker and will be linked with
the specified Ada object files.

Command line options may be specified in any order, but the order
of compilation and the order of the files to be passed to the linker
can be significant.

Several VADS corapilers may be simultaneously available on a single
system. The VADS ADA command within any version of VADS
on a system will execute the correct compiler components based upon
visible library directives.

Program listings with a disassembly of machine code instructions are
generated by VADS DB or VADS DAS.

Diagnostics

The diagnostics produced by the VADS compiler are intended to be
self-explanatory. Most refer tL the RM. Each RM reference includes a section
number and optionally, a paragraoh number enclosed in parentheses.

B-4

COMPILATION SYSTEM OPTIONS

L'NKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

VADS LD - prelinker

Syntax

VADS LD unit name

Qualifiers

/AP ;ND

/DEBUG Debug memory overflow (use in cases where linking a large number
units causes the error message "local symbol overflow" to occur).

/EARLY
/EARLY="unit name" Force the given unit to be elaborated as early as
possible (unitname must be enclosed in double quotes).

/EXECUTABLE
/EXECUTABLE[=file name]
Put the output in the named file. The default executable names are
<main unlt>.EXE on self-hosts or <mainunit>.VOX on cross targets.

/FILES Print a list of dependent files in elaboration order and suppres
linking.

/LIBRARY
/LIBRARY=library name Operate in VADS library libraryname
(the current working directory is the default).

/LINK OPTIONS
/LINK-OPTIONS=object file or qualifier [...]"
Add the options surroinded by quotes to the invocation of the linker.

B-5

COMPILATION SYSTEM OPTIONS

/OUTPUT
/OUTPUT-file name Direct output to file name. Default is SYS$OUTPUT.

/SHOW Show the name of the tool executable but do not execute it.

/UNITS Print a list of dependent units in order and suppress linking.

/VERBOSE Print the VMS linker command prior to execution.

/VERIFY Print the VMS linker command but suppress execution.

Description

VADS LD collects the object files needed to make unit name
a main program and calls the VMS linker to link togetHer all Ada
and other language objects required to produce an executable. unit-name
must be a non-generic subprogram that is either a procedure or
a function that returns an Ada STANDARD.INTEGER (the predefined type
INTEGER). The utility uses the net files produced by the Ada compiler
to check dependency information. VADS LD produces an exception
mapping table, a unit elaboration table, and passes this information
to the linker.

VADS LD reads instructions for generating executables from
the ADA.LIB file in the VADS libraries on the search list.
Besides information generated by the compiler, these directives also
include WITHn directives that allow the automatic linking
of object modules compiled from other languages or Ada object modules
not named in context clauses in the Ada source. Any number of WITH
directives may be placed into a library, but they must be numbered
contiguously beginning at WITHI. The directives are recorded in the
library's ADA.LIB file and have the following form:

WITH11LINKIobject filel
WITH21LINKlarchivefilel

WITH directives may be placed in the local Ada libraries or in any
VADS library on the search list.

A WITH directive in a local VADS library or earlier on the library search list
will hide the same numbered WITH directive in a library later in the library
search list.

Use VADS INFO to change or report library directives in the current library.

All arguments after unit name are passed on to the linker. These arguments may
be linker options, names-of object files or archive libraries, or library
abbreviations.

Diagnostics

Self-explanatory diagnostics are produced for missing files, etc.
Occasional additional messages are produced by the linker.

B-6

COMPILATION SYSTEM OPTIONS

Files

Normally VADS LD generates an intermediate file with the
process ID as a substring, VADSOPTION<processID>.OPT.

Vith either the /VERIFY or /VERBOSE qualifiers,;
however, VADS LD will produce the intermediate file <main unit>.OPT.

B-7

APPENDIX F OF THE Ada STANDARD

ATTACHMENT I

APPENDIX F. Implementation-Dependent Characteristics

1. Implementation-Dependent Pragmas

1.1. INITIALIZE Pragma

Takes one of the identifiers STATIC or DYNAMIC as the single
argument. This pragma is only allowed within a library-level
package spec or body. It specifies that all objects in
the package be initializid as requested by the pragma (i.e
statically or dynamically). Only library-level objects are
subject to static initialization; all objects within
procedures are always (by definition) dynamic. If pragma
INITIALIZE(STATIC) is used, and an object cannot be
initialized statically, code will be generated to initialize
the object, and a warning message will be generated.

1.2. INLINE ONLY Pragma

The INLINE ONLY pragma, when used in the same way as pragma
INLINE, indicates to the compiler that the subprogram must
always be inlined. This pragma also suppresses the genera-
tion of a callable version of the routine which saves code
space. If a user erroneously makes an INLINE ONLY subpro-
gram recursive, a warning message will be emitted and an
PROGRAM ERROR will be raised at run time.

1.3. BUILTIN Pragma

The BUILT IN pragma is used in the implementation of some
predefineU Ada packages, but provides no user access. It is
used only to implement code bodies for which no actual Ada
body can be provided, for example, the MACHINE-CODE package.

1.4. SHARE CODE Pragma

The SHARE CODE pragma takes the name of a generic instantia-
tion or a generic unit as the first argument and one of the
identifiers TRUE or FALSE as the second argument. This
pragma is only allowed immediately at the place of a

C-2

APPENDIX F OF THE Ada STANDARD

declarative item in a declarative part or package specifica-
tion, or after a library unit in a compilation, but before
any subsequent compilation unit.

When the first argument is a generic unit, the pragma applies
to all instantiations of that generic. When the first argu-
ment is the name of a generic instantiation, the pragma
applies only to the specified instantiation, or overloaded
instantiations.

If the second argument is TRUE, the compiler will try to
share code generated for a generic instantiation with code
generated for other instantiations of the same generic.
When the second argument is FALSE, each instantiation will
get a unique copy of the generated code. The extent to
which code is shared between instantiations depends on this
pragma and the kind of generic formal parameters declared
for the generic unit.

The name pragma SHARE BODY is also recognized by the imple-
mentation and has The same effect as SHARE CODE. It is
included for compatability with earlier versionis of VADS.

1.5. NO IMAGE Pragma

The pragma suppresses the generation of the image array used
for the IMAGE attribute of enumeiation types. This elim-
inates the overhead required to store the array in the exe-
cutable image. An attempt to use the IMAGE attribute on a
type whose image array has been suppressed will result in a
compilation warning and PROGRAM ERROR raised at run time.

1.6. EXTERNAL NAME Pragma

The EXTERNAL NAME pragma takes the name of a subprogram or
variable defined in Ada and allows the user to specify a
different external name that may be used to reference the
entity from other languages. The pragma is allowed at the
place of a declarative item in a package specification and
must apply to an object declared earlier in the same package
specification.

1.7. INTERFACE NAME Pragma

The INTERFACE NAME pragma takes the name of a a variable or
subprogram defined in another language and allows it to be
referenced directly in Ada. The pragma will replace all
occurrences of the variable or subprogram name with an
external reference to the second, link argument. The pragma
is allowed at the place of a declaraTive item in a package
specification and must apply to an object or subprogram
declared earlier in the same package specification. The

C-3

APPENDIX F OF THE Ada S"'NDARD

object must be. declared as a scalar or an access type. The
object cannot be any of the following:

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

1.8. IMPLICIT CODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies that implicit code generated by the
compiler be allowed or disallowed. A warning is issued if
OFF is used and any implicit code needs to be generated.
The default is ON.

1.9. OPTIMIZECODE Pragma

Takes one of the identifiers ON or OFF as the single argu-
ment. This pragma is only allowed within a machine code
procedure. It specifies whether the code should be optim-
ized by the compiler. The default is ON. When OFF is
specified, the compiler will generate the code as specified.

2. Implementation of Predefined Pragmas

2.1. CONTROLLED

This pragma is recognized by the implementation but has no
effect.

2.2. ELABORATE

This pragma is implemented as described in Appendix B of the

Ada RM.

2.3. INLINE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.4. INTERFACE

This pragma supports calls to 'C' and FORTRAN functions. The
Ada subprograms can be either functions or procedures. The
types of parameters and the result type for functions must
be scalar, access, or the predefined type ADDRESS in SYSTEM.
All parameters must have mode IN. Record and array objects
can be passed by reference using the ADDRESS attribute.

C-4

APPENDIX F OF THE Ada STANDARD

2.5. LIST

This pragma is implemented as described in Appendix B of the

Ada RM.

2.6. MEMORY SIZE

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas; the SYSTEM package must be recompiled.

2.7. NON REENTRANT

This pragma takes one argument which can be the name of
either a library subprogram or a subprogram declared immedi-
ately within a library package spec or body. It indicates
to the compiler that the subprogram will not be called
recursively, allowing the compiler to perform specific optim-
izations. The pragma can be applied to a subprogram or a
set of overloaded subprograms within a package spec or pack-
age body.

2.8. NOT ELABORATED

This pragma can only appear in a library package specifica-
tion. It indicates that the package will not be elaborated
because it is either part of the RTS, a configuration pack-
age, or an Ada package that is referenced from a language
other than Ada. The presence of this pragma suppresses the
generation of elaboration code and issues warnings if ela-
boration code is required.

2.9. OPTIMIZE

This pragma is recognized by the implementation but has no
effect.

2.10. PACK

This pragma will calise the compiler to choose a non-aligned
representation for zomposite types.. It will not cause
objects to be packed at the bit level.

2.11. PAGE

This pragma is implemented as described in Appendix B of the
Ada RM.

2.12. PASSIVE

C-5

APPENDIX F OF THE Ada STANDARD

The pragma has three forms:

PRAGMA PASSIVE;
PRAGMA PASSIVE(SEMAPHORE);
PRAGMA PASSIVE(INTERRUPT, <number>);

This pragma Pragma passive can be applied to a task or task
type declared immediately within a library package spec or
body. The pragma directs the compiler to optimize certain
tasking operations. It is possible that the statements in a
task body will prevent the intended optimization; in these
cases, a warning will be generated at compile time and will
raise TASKING ERROR at runtime.

2.13. PRIORITY

This pragma is implemented as described in Appendix B of the
Ada RM.

2.14. SHARED

This pragma is recognized by the implementation but has no
effect.

2.15. STORAGE UNIT

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas; the SYSTEM package must be recompiled.

2.16. SUPPRESS

This pragma is implemented as described, except th:at
DIVISION CHECK and in some cases OVERFLOWCHECK cannot be
suppressed.

2.17. SYSTEM NAME

This pragma is recognized by the implementation. The imple-
mentation does not allow SYSTEM to be modified by means of
pragmas; the SYSTEM package must be recompiled.

3. Implementation-Dependent Attributes

3.1. P'REF

For a prefix that denotes an object. a program unit, a
label, or an entry:

This attribute denotes the effective address of the first of
the storage units allocated to P. For a subprogram, pack-

C-6

APPENDIX F OF THE Ada STANDARD

age, task unit, or label, it refers to the address of the
machine code associated with the corresponding body or
statement. For an entry for which an address clause has
been given, it refers to the corresponding hardware inter-
rupt. The attribute is of the type OPERAND defined in the
package MACHINE CODE. The attribute is only allowed within
a machine code procedure.

See section F.4.8 for more information on the use of this
attribute.

(For a package, task unit, or entry, the 'REF attribute is
not supported.)

3.2. T'TASKID

For a task object or a value T, T'TASK ID yields the unique
task id associated with a task. The value of this attribute
is of the type ADDRESS in the package SYSTEM.

4. Specification of Package SYSTEM

-- Copyright 1987, 1988, 1989, 1990 Verdix Corporation

with unsignedtypes;
package SYSTEM is

pragma suppress(ALL CHECKS);
pragma suppress(EXCEPTIONTABLES);
pragma notelaborated;

type NAME is (i386);

SYSTEMNAME constant NAME := i386;

STORAGE UNIT : constant := 8;
MEMORYSIZE : constant := 16_777 216;

-- System-Dependent Named Numbers

MIN INT : constant -2 147 483 648;
MAX INT : constant 2 147 483_647;
MAX-DIGITS : constant 15; -i
MAX MANTISSA constant := 31;
FINE DELTA : constant 2.0"*(-31);
TICK- : constant 0.01;

-- Other System-dependent Declarations

C-7

APPENDIX F OF THE Ada STANDARD

subtype PRIORITY is INTEGER range 0 .. 99;

MAX REC SIZE : integer :- 64*1024;

type ADDRESS is private;

function ">" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<" (A: ADDRESS; B: ADDRESS) return BOOLEAN;
function ">."(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "<="(A: ADDRESS; B: ADDRESS) return BOOLEAN;
function "-" (A: ADDRESS; B: ADDRESS) return INTEGER;
function "+" (A: ADDRESS; I: INTEGER) return ADDRESS;
function "-" (A: ADDRESS; I: INTEGER) return ADDRESS;

function 1"+ (I: UNSIGNED TYPES.UNSIGNEDINTEGER) return ADDRESS;

function MEMORY ADDRESS
(I: UNSIGNED TYPES.UNSIGNEDINTEGER) return ADDRESS renames "+";

NOADDR : constant ADDRESS;

type TASK ID is private;
NOTASKID : constant TASKID;

type PROGRAM ID is private;
NO_PROGRAM_ID : constant PROGRAMID;

private

type ADDRESS is new UNSIGNEDTYPES.UNSIGNEDINTEGER;

NO ADDR : constant ADDRESS := 0;

pragma BUILTIN(">") ;
pragma BUILT IN("<");
pragma BUILT IN(">.");
pragma BUILTIN("<=");
pragma BUILT IN("-");
pragma BUILT-IN("+");

type TASK ID is new UNSIGNED TYPES.UNSIGNEDINTEGER;
NO TASK ID : constant TASK_ID := 0;

type PROGRAM ID is new UNSIGNED TYPES.UNSIGNEDINTEGER;
NO PROGRAMID : constant PROGRAM ID := 0;

end SYSTEM;

5. Restrictions on Representation Clauses

C-8

APPENDIX F OF THE Ada STANDARD

5.1. Pragma PACK

In the absence of Pragma PACK, record components are padded
so as to provide for efficient access by the target
hardware; pragma PACK applied to a record eliminates the pad-
ding where possible. Pragma PACK has no other effect on the
storage allocated for record components a record representa-
tion is required.

5.2. Size Clauses

For scalar types, a representation clause will pack to the
number of bits required to represent the range of the sub-
type. A size clause applied to a record type will not cause
packing of components; an explicit record representation
clause must be given to specify the packing of the com-
ponents. A size clause applied to a record type will cause
packing of components only when the component type is a
discrete type. An error will be issued if there is insuffi-
cient space allocated. The SIZE attribute is not supported
for task, access, or floating point types.

5.3. Address Clauses

Address clauses are only supported for variables. Since
default initialization of a variable requires evaluation of
the variable address, elaboration ordering requirements
prohibit initialization of variables which have address
clauses. The specified address indicates the physical
address associated with the variable.

5.4. Interrupts

Interrupt entries are not supported.

5.5. Representation Attributes

The ADDRESS attribute is not supported for the following
entities:

Packages
Tasks
Labels
Entries

5.6. Machine Code Insertions

Machine code insertions are supported.

The general definition of the package MACHINE CODE provides

C-9

APPENDIX F OF THE Ada STANDARD

an assembly language interface for the target machine. It
provides the necessary record type(s) needed in the code
statement, an enumeration type of all the opcode mnemonics,
a set of register definitions, and a set of addressing mode
functions.

The general syntax of a machine code statement is as fol-
lows:

CODE n'(opcode, operand (, operand));

where n indicates the nimber of operands in the aggregate.

A special case arises for a variable number of operands.
The operands are listed within a subaggregate. The format
is as follows:

CODEN'(opcode, (operand {, operand)));

For those opcodes that require no operands, named notation
must be used (cf. RM 4.3(4)).

CODEO'(op => opcode);

The opcode must be an enumeration literal (i.e., it cannot be
an object, attribute, or a rename).

An operand can only be an entity defined in MACHINE CODE or
the 'REF attribute.

The arguments to any of the functions defined in
MACHINE CODE must be static expressions, string literals, or
the funEtions defined in MACHINE CODE. The 'REF attribute
may not be used as an argument in any of these functions.

Inline expansion of machine code procedures is supported.

6. Conventions for Implementation-generated Names

There are no implementation-generated names.

7. Interpretation of Expressions in Address Clauses

Address expressions in an address clause ars interpreted as
physical addresses.

8. Restrictions on Unchecked Conversions

None.

9. Restrictions on Unchecked Deallocations

C-10

APPENDIX F OF THE Ada STANDARD

None.

10. Implementation Characteristics of I/O Packages

Instantiations of DIRECT 10 use the value MAX REC SIZE as
the record size (expressed in STORAGE UNITS) when-the size
of ELEMENT TYPE exceeds that value. For-example, for uncon-
strained irrays such as string, where ELEMENT TYPE'SIZE is
very large, MAX REC SIZE is used instead. MAX-RECORD SIZE
is defined in SYSTEM and can be changed by a program before
instantiating DIRECT IO to provide an upper limit on the
record size. In any case, the maximum size supported is 1024
x 1024 x STORAGE UNIT bits. DIRECT 10 will raise USE ERROR
if MAX REC SIZE ixceeds this absoluie limit.

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE
as the record size (expressed in STORAGE UNITS)-when the
size of ELEMENT TYPE exceeds that value. For example, for
unconstrained arrays such as string, where ELEMENT TYPE'SIZE
is very large, MAX REC SIZE is used -instead.
MAX RECORD SIZE is defined in-SYSTEM and can be changed by a
program belore instantiating INTEGER 10 to provide an upper
limit on the record size. SEQUENTIAL IO imposes no limit on
MAXREC SIZE.

11. Implementation Limits

The following limits are actually enforced by the implemen-
tation. It is not intended to imply that resources up to or
even near these limits are available to every program.

11.1. Line Length

The implementation supports a maximum line length of 500
characters including the end of line character.

11.2. Record and Array Sizes

The maximum size of a statically sized array type is
4,000,000 x STORAGE UNITS. The maximum size of a statically
sized record type is 4,000,000 x STORAGE UNITS. A record
type or array type declaration that exceeds these limits
will generate a warning message.

11.3. Default Stack Size for Tasks

In the absence of an explicit STORAGESIZE length specifica-
tion, every task except the main program is allocated a fixed
size stack of 10,240 STORAGE UNITS. This is the value
returned by T'STORAGESIZE for a task type T.

11.4. Default Collection Size

C-1i

APPENDIX F OF THE Ada STANDARD

In the absence of an explicit STORAGE SIZE length attribute,
the default collection size for an access type is 100 times
the size of the designated type. This is the value returned
by T'STORAGESIZE for an access type T.

11.5. Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for
objects declared statically within a compilation unit. If
this value is exceeded, the compiler will terminate the com-
pilation of the unit with a FATAL error message.

C-12

